Gene Therapy For Muscular Dystrophy Fixes Frail Muscle Cells In Animal Model, Stanford Study Finds

STANFORD, Calif. — A new gene therapy technique that has shown promise in skin disease and hemophilia might one day be useful for treating muscular dystrophy, according to a new study by researchers at Stanford University School of Medicine.

In the study, published online in the Proceedings of the National Academy of Sciences the week of Jan. 2, the researchers used gene therapy to introduce a healthy copy of the gene dystrophin into mice with a condition that mimics muscular dystrophy. The dystrophin gene is mutated and as a result produces a defective protein in the roughly 20,000 people in the United States with the most common form of the disease.

Read more

Three New Pioneers: Scientists Receive Top NIH Award

BY LOUIS BERGERON

Three School of Medicine scientists, including one jointly appointed with the School of Engineering, are among a select group of 13 researchers nationwide being recognized for their innovative work by the National Institutes of Health. The winners of the NIH Director’s 2005 Pioneer Awards will each receive up to $500,000 annually for five years to help fund their research.

With three winners, Stanford has more awardees this year than any other institution. The NIH announced the winners on Sept. 29. “Although the Pioneer Award is relatively new, it has quickly become one of the most prestigious and important recognitions by the NIH,” said Philip Pizzo, MD, dean of the School of Medicine. “Having three Pioneer Award winners is simply remarkable.”

Read more

Young Blood Revives Aging Muscles, Stanford Researchers Find

STANFORD – Any older person can attest that aging muscles don’t heal like young ones. But it turns out that’s not the muscle’s fault. A study in the Feb. 17 issue of Nature shows that it’s old blood that keeps the muscles down.

The study, led by Thomas Rando, MD, PhD, associate professor of neurology and neurological sciences at the Stanford University School of Medicine, built on previous work showing that old muscles have the capacity to repair themselves but fail to do so. Rando and his group studied specialized cells called satellite cells, the muscle stem cells, that dot muscle tissue. These normally lie dormant but come to the rescue in response to damaged muscle-at least they do in young mice and humans.

Read more

Age-Related Muscle Loss Linked To Protein Interplay, Says Stanford Researcher

Any older athlete can attest that aging muscles don’t heal as fast as youthful ones. Now researchers at Stanford University School of Medicine have found a molecular link between older muscles and slow healing. This work could lead to ways of preventing atrophy from immobilization, space flight or simply due to aging.

“What you really want to do is maintain the youthfulness of the regeneration pathway,” said Thomas Rando, MD, PhD, associate professor of neurology and neurological sciences and an investigator at the Veterans Affairs Palo Alto Health Care System. The work will be published in the Nov. 28 issue of Science.

Full article