Stanford Researchers Find Culprit In Aging Muscles That Heal Poorly

By Louis Bergeron

STANFORD, Calif. — Communication is critical. Garbled in, garbled out, so to (mis-)speak. Workers who get incomplete instructions produce an incomplete product, and that’s exactly what happens with the stem cells in our aging muscles, according to researchers from the Stanford University School of Medicine.

Their study found that, as we age, the lines of communication to the stem cells of our muscles deteriorate and, without the full instructions, it takes longer for injured muscles to heal. Even then, the repairs aren’t as good. But now that the researchers have uncovered the conduit that conveys the work orders to muscle stem cells, that knowledge could open the door to new therapies for injuries in a host of different tissues.

Read more

Adult Stem Cells May Have Smarts To Guard Against Cancer, Stanford Researchers Find

The findings, from the lab of Thomas Rando, MD, PhD, associate professor of neurology and neurological sciences, suggest stem cells are careful when they undergo cell division so that random mutations in their chromosomes are not passed on to the next generation of stem cells. The results support a much-debated hypothesis proposed in 1975 by Oxford University geneticist John Cairns, PhD. Although other groups have uncovered hints that Cairns was right, Rando’s findings are the most detailed to date.

The results are published in the April 17 issue of the Public Library of Science-Biology.
Rando said no other work he’s done has created as much excitement among his colleagues in the stem cell field. “The lesson from this is that when something seems strange, don’t ignore it. Sometimes what puzzles you turns out to be the most interesting,” he said.

Read more